Rewrite the Integral in terms of u

1. If $\int_{0}^{3} \sqrt{y+1} d y$ and $u=y+1$, then
2. If $\int_{0}^{1} r \sqrt{1-r^{2}} d r$ and $u=1-r^{2}$, then
3. If $f_{-\frac{\pi}{4}}^{0} \tan x \sec ^{2} x d x$ and $u=\tan x$, then
4. If $\int_{-1}^{1} \frac{5 r}{\left(4+r^{2}\right)} d r$ and $u=4+r^{2}$, then
5. If $\int_{0}^{1} \frac{10 \sqrt{\theta}}{\left(1+\theta^{2}\right)^{2}} d \theta$ and $u=1+\theta^{\frac{3}{3}}$, then
6. If $\int_{-\pi}^{\pi} \frac{\cos x}{\sqrt{4+3 \sin x}} d x$ and $u=4+3 \sin x$, then
7. If $\int_{0}^{1} \sqrt{t^{5}+2 t}\left(5 t^{4}+2\right) d t$ and $u=t^{5}+2 t$, then
8. If $\int_{0}^{\frac{\pi}{6}} \cos ^{-3} 2 \theta \sin 2 \theta d \theta$ and $u=\cos 2 \theta$, then
9. If $\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{4}+9}} d x$ and $u=x^{4}+9$, then
10. If $\int_{0}^{2} \frac{e^{x}}{3+e^{x}} d x$ and $u=3+e^{x}$, then
